

Metal Fabrication

Practice Aptitude Quiz

Part 1: About this quiz

Use this quiz to prepare for an Apprenticeship in Metal Fabrication

This quiz:

- Is NOT a formal assessment tool or pre-requisite for any job application
- Shows key learning standards for the Metal Fabrication industry
- Has been developed with the help of industry leaders, TAFE and high schools

Quiz details

This quiz will:

- Take approximately 90 minutes to complete
- Ask you numeracy and literacy questions specific to the Metal Fabrication industry
- Assess your literacy and numeracy at a Year 11 standard
- Allow you to use a calculator
- · Share correct answers at the end

Who should take this quiz?

You should complete this guiz if you:

- · Are thinking about starting an Apprenticeship in the Metal Fabrication industry
- Want to practise for a formal aptitude test

Need help with your literacy and numeracy skills?

If you want to improve your literacy and numeracy skills, reach out to any of the below:

- Australian Apprenticeship Support Network providers
- Your Registered Training Organisation when you start training
- Reading Writing Hotline:
 1300 655 506
 www.readingwritinghotline.edu.au
- Careers advisers and your teachers (if you're in high school)

More information about the Metal Fabrication industry

Visit www.yourcareer.gov.au/industries/c/manufacturing

On this page you'll be able to:

- See the most popular Metal Fabrication industry occupations
- Get general information and statistics about the industry
- Search for Metal Fabrication industry courses

How to use this quiz

This is an interactive form that can be filled out on your computer.

You can either:

- Fill it out on your computer; OR
- Print it out; OR
- Write your answers down on paper as you go.

Use the answers section at the end of the quiz to see how you went.

How to complete this quiz on your computer

- 1. Download and save the quiz onto your computer
- 2. Open the file from your computer
- 3. Fill in the form using a keyboard and mouse

Part 2: The Quiz

Section 1: Language and Literacy

Section 1. Le	anguage and Litt	acy	
1. Change the	se following words in	to plurals:	
Address			
Welder			
Fix			
Lunch			
Finish			
2. Write these a	abbreviated words in	full:	
Dr.			
Wed			
Jan			
mm			
LOL			
2 Metal Eabric	ation uses a number	of different industri	al gases. Write the following
	habetical order in the		ar gases. Write the following
Oxygen	Argon	Hydrogen	LPG (Liquid Petroleum Gas)
Nitrogen	Acetylene	Helium	Carbon dioxide
			1
			_

4. Read the following text. In each paragraph, there are seven spelling or grammar errors. Correct those errors and list them in the order they appear:

About the Metal Fabrication Trade

The Metel Fabrication trade offers diverse opportunities in career development. Sume of the key attributes an employur may look four in an applicant are: reliability; self-motivation; and eagerness to lern. The traditional avenue to become a tradespersan in Metal Fabrication is thrugh an Australian Apprenticeship.

If you are a persan who enjoys phisical and practical tasks, working with your hands, and you can operate in challenging environments and keep up with advencing technology, this trade may suit you. Apprentices develop a range of technical knowledge and organisational skills. Apprentices learn how to safly operate tools, reed technical drawings, work with indstrial machinery, and also to operate welding equipment end thermal cutting equipment.

Once you hav obtained your trede qualifications you have opportunities to enhance your skils and knowladge through post trade studies soch as a Diploma in Engineering, for example. It all depends on where your interast develops and whot part of the trade you wish to focus on.

Paragraph 1	Paragraph 2	Paragraph 3

5. Read the following passage and answer the questions that follow:

The principle of thermal cutting in the Metal Fabrication industry.

A Metal Fabricator Tradesperson is required at times to work with thermal cutting/gouging equipment such as plasma, fuel gas cutting, gouging and heating equipment to assist in the manufacture of metal products.

Flame cutting principally uses the burning of a gas mixture to generate heat. The mixture often used is oxygen and a fuel gas such as acetylene or LPG (Liquefied Petroleum Gas). The process is also commonly known by such names as oxy-cutting and thermal cutting.

The process used for flame cutting steel depends on a chemical reaction known as oxidisation between heated iron and a pure oxygen jet. When a piece of steel is heated to an ignition temperature of 815°C, and a jet of pure oxygen is released under the operator's control, the iron in the steel will burn to form a substance called iron oxide. The ignition temperature at which the chemical reaction begins for low carbon steel is 815°C. This is well below its melting temperature which is about 1,450°C.

The chemical reaction generates a great deal of heat. Once the metal begins to burn, the heat generated will lead to a spread of oxidisation through the material. This heat enables the cutting to continue and pierce thick steel sections without overall heating of the metal.

One of the important properties of flame cutting is that the steel contains iron. So for non-ferrous metals, that is metals that contain no iron, the plasma arc torch is used for cutting and gouging to overcome the lack of iron.

a. For flame cutting/gouging the most common gas combinations used are:

Helium Oxygen and Carbon Dioxide gases

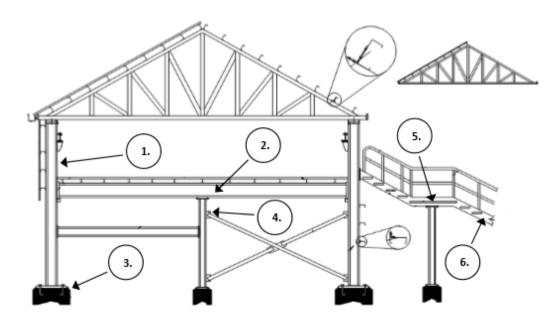
Oxygen and Acetylene or Oxygen & LPG

Oxygen, Carbon Dioxide and Hydrogen gases

Hydrogen Carbon Dioxide and Argon gases

b. The flame cutting of steel depends on a chemical reaction known as oxidisation. This reaction occurs between:

Heated pure Oxygen jet and Carbon


Heated steel and Acetylene gas

Heated iron and LP gas

Heated Iron and a pure Oxygen jet

C.	The temperature oxidisation occurs at is known as:
	Oxidisation temperature
	Melting temperature
	Ignition temperature
	Burning temperature
d.	The ignition temperature at which oxidisation occurs is:
	723° C
	1450° C
	950° C
	815° C

Section 2: General Knowledge

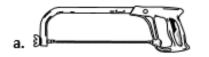
Look at this diagram of the components of a steel framed building.

Metal fabricators are often required to fabricate and assemble various steel structural joints and sections. It is important that the fabricator has an understanding of the terminologies used in the naming of particular components in these steel structures.

1. Locate the building component numbers from the drawing supplied above and place that number adjacent to the correct description of that building component:

	Item No.	Name/Description
a.		Base plate - welded to the base of the column member and secured to the footing
b.		Column - vertical support member of a building frame
C.		Gussets - plates which connect cross braces to columns
d.		Stair stringers - side members which support stair treads
e.		Girder/Beam - the horizontal beam which carries loads and connects column to column
f.		Landing - the flat area between flights of stairs

Hand and power tools


Displayed below are common hand and power tools operated by a metal fabrication tradesperson.

2. Write the letter that corresponds to the description of that tool:

Letter	Letter Name/Description			
	Electric sheet metal sheerer			
	Electric angle grinder			
	Electric hand drill (pistol drill)			
	Straight shank twist drill bit			
	Hole saw bit			
	Electric jig saw			
	Electric sheet metal nibbler			

3. Select the correct name of each hand tool illustrated below:

Coping saw	Grip clamp	Double open end spanner
Hack saw	Multi grips	Ratchet spanner
Sabre saw	Self-locking pliers	Double end ring spanner

4. Micrometres are measuring devices that are used for accurate measurement to 0.01 mm, choose the correct reading of the micrometre displayed underneath. Select the correct response:

10 mm 10.05 mm 10.55 mm 10.5 mm

Gauges are used to hold high cylinder pressures to a constant adjustable working pressure. Metal Fabricators are required to read and set regulators pressures to the correct gauge reading.

5. Referring to the gauge below, if the needle was pointing to '20' on the outside scale, what would be the nearest inside scale reading?

The Tapping Chart shown is used to provide information on different threads and pitch types available as well as what size drill you are required to use to tap a thread.

4.3 mm

3.8 mm

5 mm

4.5 mm

6. Referring to the chart, what is the drill size preferred for a $5 \text{ mm } \times 0.8 \text{ mm}$ pitch thread? Select the correct response.

Metric ISO Coarse					
Diamatan	Ditala	Tapping	Tapping drill sizes		
Diameter	Pitch	Preferred	Alternative		
mm	mm	mm	mm		
2.00	0.40	1.65	1.60		
2.50	0.45	2.10	2.05		
3.00	0.50	2.55	2.50		
3.50	0.60	2.95	2.90		
4.00	0.70	3.40	3.30		
4.50	0.75	3.80	3.70		
5.00	0.80	4.30	4.20		
6.00	1.00	5.10	5.00		
7.00	1.00	6.10	6.00		
8.00	1.25	6.90	6.80		

7. Read the following item about Personal Protective Equipment (PPE):

Personal protective clothing, hand protection, foot protection and respiratory protective equipment are often necessary in the Metal Fabrication sector.

Personal Protective Equipment (PPE) includes clothing, equipment and substances designed to be worn or used to protect people from risks of injury or disease.

PPE is only to be used in the workplace where it is not reasonably practicable to control hazards by other means.

The following information describes some PPE used to guard workers against specific hazards.

Gloves

Photo A

Breathing Mask

Photo B

Goggles

Photo C

Sign A

Sign B

Sign C

Sign D

Part of Body	Some Potential Hazards
Head	Falling objects
Face & Eyes	Sparks, ultraviolet light, metal shards, chemical splashes, fumes
Hearing	Excessive noise
Respiratory	Dust, fumes, vapours
Hands	Abrasion, sparks, irritant substances, vibration , electric shock
Feet	Crushing, slipping, abrasion, irritant substances, wetness, electric shock, static electricity, puncture, cold/heat

Questions:

- a. Using an angle grinder can produce sparks that have the potential to damage eyes. What PPE could be used to guard against this hazard? (Note: there may be more than one PPE that can be used in this case).
- b. If you are lifting heavy objects there is a risk of dropping the load on your feet. What PPE could be used to help prevent injuring your feet?
- c. Some workplaces use chemical agents to maintain or clean equipment. What two PPE could be used to protect you from inhaling chemical fumes and prevent contact between the chemicals and your hands?
- d. Some machinery operates at high noise levels. What PPE can help to protect a worker's hearing in these types of situations?

8. Metal Fabrication Workers rely on drawings and plans as a way of assisting with communication. Drawings often display symbols and abbreviations so the drawing is not filled up with a lot of writing. Match the symbols and abbreviations with the correct descriptions:

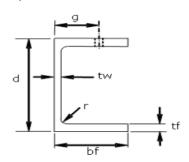
Descriptions:

Radius Slope ratio and its direction Diameter Not to scale

Bilateral tolerance Pitch circle diameter Reference measurement

	Symbol or abbreviation	Correct Description for items
а.	Ø	
b.	PCD	
c.	(758)	
d.	R	
e.	73 ± 0.5	
f.	NTS	
g.	1	

9. The chart below records the dimensions and properties of varying Parallel Flange Channels (PFC):


			Par	allel Flange	Chann	els – Din	nensions a	and Pr	opertie	s		
Desig- nation	Mass per metre	Depth of section	Width	lange Thickness	Web thick- ness	Radius Root	Depth between flanges	D1	(Bttw)	Gross area of cross section	Coordinate of centroid	Gauge line
		d	bt	tr	tw	R	d1	tw	tx	Ag	X1	g
	kg/m	mm	mm	mm	mm	mm	mm			Mm2	mm	mm
380	55.2	380	100	17.5	10	14	345	34.5	5.14	7030	27.5	55
300	40.1	300	90	16	8	14	268	33.5	5.13	5110	27.2	50
250	35.5	250	90	15	8	12	220	27.5	5.47	4520	28.6	50
230	25.1	230	75	12	6.5	12	206	31.7	5.71	3200	22.6	45
200	22.9	200	75	12	6	12	176	29.3	5.75	2920	24.4	45
180	20.9	180	75	11	6	12	158	26.3	6.27	2660	24.5	45

a. Identify the dimensions for a 250 mm Parallel Flange Channel:

g		
d		
<u>u</u>		
t_{w}		
R		
t _f		
b _f		

b. Looking at the chart above and the diagram below what does the abbreviation "d" represent?

15

Section 3: Numeracy

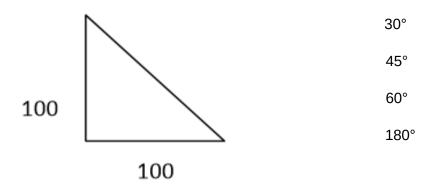
Calculators may be used

1. Evaluate the following:

```
a. 1353 + 447 + 237 + 236 + 1136
b. 238 + 589 + 905 + 78
c. 799 - 233
d. 12655 - 4356
e. 579 x 7
f. a. 68462 ÷ 4
```

2. Using the formula below, calculate the mass weight of 14 lengths of designated 310 UC (universal column), each with a mass of 198 Kg/m \times 5.450 m long:

```
Formula = (Mass per metre x Length x Quantity)


Mass = Kg/m x Length (m) x Quantity = Answer
```

3. Using the formula below, calculate the total mass weight of an order of 9 lengths of 200 Parallel Flange Channel (PFC), each with a mass of 22.9 Kg/m and length of 3450 mm:

```
Formula = QTY x Mass weight of material x Length (m)

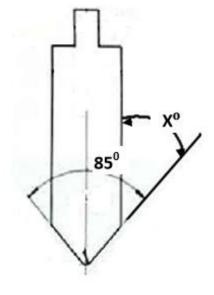
Mass = 9 x 22.9 \text{Kg/m} x 3.45 \text{ m}
```

4. What is the adjacent angle of a right-angle triangle when you have a slope ratio of 1:1? Select the correct answer.

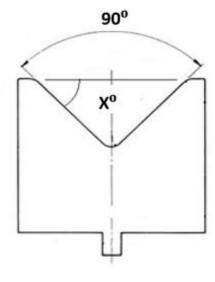
- 5. Calculate the average of these numbers: 20, 11, 37, 42, 28
- 6. Using the formula given, calculate a 1/12 segment of a pipe where the pipe diameter is 150 mm.

Formula = Dia x π ÷ required segment where π = 3.1416 Cir/Seg of 1/12th = 150 x 3.1416 ÷ 12

7. What would these fractions be if you were to divide them by 2?


a. ½
b. ½
c. ½
d. 3/8

8.	How many 6 metre lengths of 32 NB (Nominal Bore) diameter pipe will be required to get 88 pieces if each piece is to be 533 mm long?
9.	A building has 82 columns with each column requiring 68 high tensile bolts. Each bag of bolts contains 40 bolts.
	a. How many bags will be required?
	b. If no bolts are damaged or lost how many bolts will be left?
10.	What is the area of the steel plate which has a size 2.478 metres long and 5.65 metres wide?
11.	Calculate the mass of a plate 2.560 metres \times 1.225 metres \times 25 mm thick: The mass of a steel plate 1 metre square \times 1 mm is 7.85 kg.
12.	Calculate the hole pitch for 28 holes around a 2.4 metres Pitch Circle Diameter (PCD), where π = 3.1416:
	Formula to use: Pitch = PCD x π Number of holes
13.	What is the volume of a rectangular tank having an inside measurement of 788 mm


long 455 mm wide and 256 mm high?

14. Establish the size of the following X° angles by selecting the appropriate answer from the list below:

a.

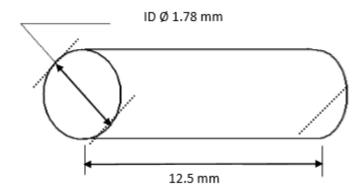
b.

37.5°

42.5°

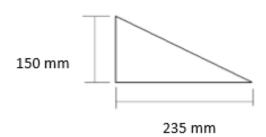
47.5°

52.5°


42.5°

45°

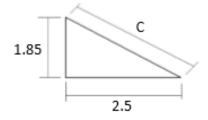
47.5°


50°

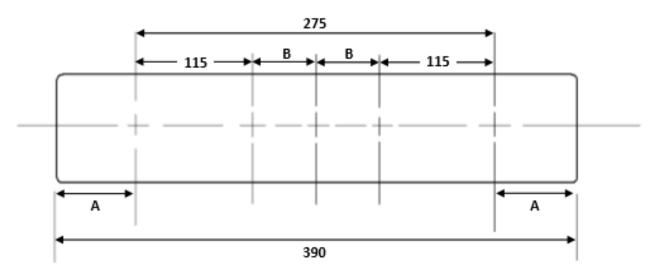
15. Calculate the volume of this cylinder using the inside diameter measurement. Use π = 3.1416.

Formula = $\pi r^2 x$ length

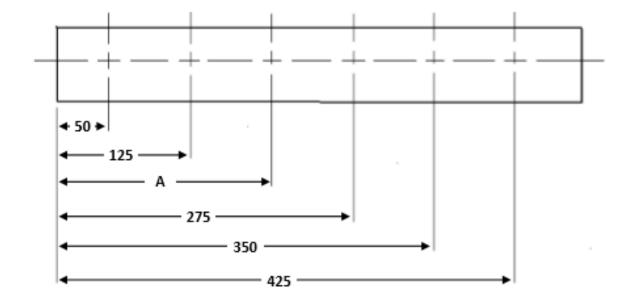
16. Calculate the area of this triangle using the following formula:



$$A = \frac{\text{Base x Height}}{2}$$


17. What is the diagonal length of a triangle having sides measuring:

A = 2.5 metres x B = 1.85 metres?


Formula:
$$C = \sqrt{A^2 + B^2}$$

18. What are the lengths of segments (A) and (B) in the diagram below? All dimensions are in mm:

19. Looking at the diagram below, six holes are to be drilled at an equal distance apart. Complete the sequence by determining the dimension of (A). All dimensions are in mm.

ANSWERS

Section 1: Language and Literacy

- 1. Addresses
 Welders Fixes
 Lunches
 Finishes
- 2. Doctor
 Wednesday
 January
 Millimetre
 Laugh out loud
- Actylene
 Argon
 Carbon dioxide
 Helium
 Hydrogen
 LPG (Liquid Petroleum Gas)
 Nitrogen
 Oxygen

Paragraph 3 Paragraph 2 Paragraph 1 4. metal person have physical trade some employer advancing skills safetv knowledge for learn read such tradesperson industrial interest through and what

- **5.** a. Oxygen and Acetylene or Oxygen-LPG
 - b. Heated Iron and a pure Oxygen jet
 - c. Ignition temperature
 - d. 815°C

Section 2: General Knowledge

- **1.** a. 3 = Base plate welded to the base of the column member and secured to the footing
 - b. 1 = Column vertical support member of a building frame
 - c. 4 = Gussets plates which connect cross braces to columns
 - d. 6 = Stair stringers side members which support stair treads
 - e. 2 = Girder/Beam the horizontal beam which carries loads and connects column to column
 - f. 5 = Landing the flat area between flights of stairs

- 2. G = Electric sheet metal sheerer
 - A = Electric angle grinder
 - C = Electric hand drill (pistol drill)
 - B = Straight shank twist drill bit
 - D = Hole saw bit
 - E = Electric jig saw
 - F = Electric sheet metal nibbler
- 3. a. Hack saw
- b. Self-locking pliers c. Double end ring spanner
- 4. 10.05 mm
- 5. 280
- 4.3 mm tapping drill size 6.
- 7. a. Photo C and Sign C
- b. Sign B c. Photo A and Photo B
- d. Sign D

- 8. a. \emptyset = Diameter
 - b. PCD = Pitch circle diameter
 - c. (758) = Reference measurement
 - d. R = Radius
 - e. $73 \pm 0.5 = Bilateral tolerance$
 - f. NTS = Not to scale
 - g. = Slope ratio and its direction 5
- 9. a. g = 50 mm
 - d = 250 mm
 - tw = 8 mm
 - R = 12.0 mm
 - tf = 15 mm
 - bf = 90 mm

Section 3: Numeracy

- 1. a. 3409
- b. 1810 c. 566
- d. 8299
- e. 4053

b. Depth of section

f. 17115.5

- 2. 15,107.4 Kg
- 3. 711.045 Kg
- 4. 45°
- 5. 27.6
- 39.27 mm 6.
- - a. $\frac{1}{4} \div 2 = \frac{1}{8}$

 - $\frac{1}{2} \div 2 = \frac{1}{4}$ $\frac{1}{8} \div 2 = \frac{1}{16}$ $\frac{3}{8} \div 2 = \frac{3}{16}$

- 8. 8 lengths of 6 metre 32 Ø NB pipe
- **9.** a. 140 bags b. 24 bolts
- **10.** 14 m²
- **11.** 615.44 kg
- **12.** 0.26928 m
- **13.** 91,786,240 mm³
- **14.** a. 42.5° b. 45°
- **15.** 31.106 mm³
- **16.** 17625 mm²
- **17.** C = 3.11 m
- **18.** A = 57.5 mm B = 22.5 mm
- **19.** 200 mm